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SUMMARY 

Performance of genomic selection is typically evaluated by cross-validation. In this work we 

review and point out some problems and features of the cross-validation metrics. Then we propose 

a semiparametric alternative using statistics derived from the “Method R”. 

 

INTRODUCTION 

Genomic prediction of breeding values via genomic BLUP (GBLUP) is expensive and requires 

initial and continuous investments in genotyping. State of the art theory so far does not yield 

convincing a priori estimates of the increased accuracy of genomic prediction vs. pedigree-based 
predictions. Thus, cross-validation has been extensively used (e.g. Legarra et al. 2008; VanRaden 

et al. 2009; Mantysaari et al. 2010; Christensen et al. 2012). The theory of cross-validation is 

poorly understood in the context of heavily related and selected data (but see (Gianola and Schön, 

2016)). For instance, how to evaluate accuracy for maternal traits is very unclear. Here we provide 

a brief review of this topic and suggest some options. 

 

CROSS-VALIDATION BIAS AND ACCURACY 

What cross-validation? Forecasters such as pedigree-BLUP and GBLUP may behave differently 

according to what the “forecasted” target is. Breeders have a difficult task, namely, to forecast the 

best reproducers in order to select them. In this, they are different from machine learners, whose 

objective is (from our perspective) to forecast present phenomena. Thus, it is rather obvious that 
for breeders the best method is such that allows taking the best selection decisions, that it is, the 

method that best predicts future performance of an individual knowing its genetic background. 

We will call this forward cross-validation. Its features are three-fold: (1) It needs the definition 

of a cut-off date; (2) It needs the construction of “Full” and “Reduced” data sets (Mantysaari et al. 

2010; Olson et al. 2011); and (3) In its crudest form, it does not provide any form of randomisation 

and therefore a point estimate of goodness of prediction is obtained, without any associated 

measure of uncertainty. 

In contrast, the classical random folding k-fold cross-validation in its most classic form splits 

randomly the data into k distinct sets and predicts one set from the remaining k-1 sets. Its key 

features include: (1) Extremely simple to implement; (2) Provides estimates of standard error of 

metrics of cross-validation; (3) Not realistic in an animal breeding setting and the ranking of 

methods is not suitable for practical purposes; and (4) Tends to overfit (case of leave-one-out) 
Some more esoteric forms of cross-validation exist. Legarra et al. (2008) split folds “across” 

or “within” families, obtaining very different results. But this is undoable (and little useful) for 

regular animal breeding data. The k-means for cross-validation (Saatchi et al. 2011) separates 

individuals into “most distinct” folds, and the i-th fold is predicted from the remaining k-1 folds. 

This does not answer the breeder’s question, which most often wants to predict from close, not 

from far animals.   

 

Which metrics? To assess the predictive ability of the different forecasters, animal breeders are 

highly formatted by Henderson’s BLUP, which in turn was highly dependent upon dairy cattle 



Advances in statistical & computational methods I 

74 

genetic improvement. Metrics commonly used come from linear regression, named in this paper 

predictive abilities, are: 

Bias: 𝑏0 = 𝐸(𝑢 − �̂�);  Slope: 𝑏1 =
𝐶𝑜𝑣(𝑢,𝑢)

𝑉𝑎𝑟(𝑢)
;     Accuracy: 𝑟 =

𝐶𝑜𝑣(𝑢,𝑢)

√𝑉𝑎𝑟(𝑢)𝑉𝑎𝑟(𝑢)
 

Sometimes mean squared error is used (𝑀𝑆𝐸 = 𝑏0
2 + 𝜎𝑢

2(1 + 𝑟2/𝑏1
2 − 2𝑟2/𝑏1)). Properties of 

BLUP in absence of selection are no bias, slope of 1, and maximum accuracy. Henderson defined 

this at the individual level on a 

frequentist basis (over conceptual 

repetitions). Bias=0 and slope=1 
ensure fair comparisons across 

old and young animals. This is 

important if the scheme mixes 

proven and young animals, like 

dairy cattle. It seems less relevant 

in schemes were reproducers are 

culled quickly (pigs, chicken) 

with beef species falling someone 

in the middle, we believe. 

Deviations may exist if there is 

selection, because bias and slope 

are related to genetic gain and 
dispersion (see Figure 1).  

 
What is it meant by classical bias? Animal breeders probably agree to Henderson’s (1973) 

sentence “most users would, I think, be reluctant deliberately to bias comparisons between 

different groups, for example to underevaluate young sires as compared to older ones”. Here we 

have an operational definition of bias. In formal terms this implies that at a given point in time: 

𝑏0
[𝐻𝑒𝑛𝑑𝑒𝑟𝑠𝑜𝑛]

= (𝟏′�̂�𝑔𝑟𝑜𝑢𝑝1 − 𝟏′�̂�𝑔𝑟𝑜𝑢𝑝2) − (𝟏′𝒖𝑔𝑟𝑜𝑢𝑝1 − 𝟏′𝒖𝑔𝑟𝑜𝑢𝑝2)

= (𝟏′�̂�𝑔𝑟𝑜𝑢𝑝1 − 𝟏′𝒖𝑔𝑟𝑜𝑢𝑝1) − (𝟏′�̂�𝑔𝑟𝑜𝑢𝑝2 − 𝟏′𝒖𝑔𝑟𝑜𝑢𝑝2) 

This definition has practical implications: if the candidates are chosen across groups, selection 

decisions are optimal if there is no bias. Thus, it is expected that 𝑏0
[𝐻𝑒𝑛𝑑𝑒𝑟𝑠𝑜𝑛]

= 0. There may be 

several definitions of groups: (1) Different conditions (grazing vs. indoor fed cattle). This case 

should be addressed by the model used for evaluation; (2) Within country, different amounts of 

information that cumulate in time (progeny-tested vs. genomic bulls). This case is strongly 

affected by within-country genetic trend (see below); (3) Same amount of information, but 

different origins (US vs. FR). This case is most affected by wrong estimates of the difference in 

genetic level across countries (Bonaiti et al. 1993; Powell and Wiggans 1994). 

The Interbull definition. Interbull uses retrospective tests (Boichard et al. 1995; Mantysaari et al. 
2010) that compare EBV’s before and after progeny testing.  

𝑏0
[𝐼𝑛𝑡𝑒𝑟𝑏𝑢𝑙𝑙]

= 𝟏′�̂�𝑡 − 𝟏′�̂�𝑡−1 

If progeny testing gives exact EBVs, then �̂�𝑡 = 𝒖𝑡 and 𝑏0
[𝐼𝑛𝑡𝑒𝑟𝑏𝑢𝑙𝑙]

= 𝟏′𝒖 − 𝟏′�̂�𝑡−1.Note that 

𝑏0
[𝐻𝑒𝑛𝑑𝑒𝑟𝑠𝑜𝑛]

≠ 𝑏0
[𝐼𝑛𝑡𝑒𝑟𝑏𝑢𝑙𝑙]

, but if group1 is “very old” proven bulls and �̂�𝑡 = 𝒖𝑡 and group2 is 

genomic bulls (then becoming proven bulls) then  𝑏0
[𝐻𝑒𝑛𝑑𝑒𝑟𝑠𝑜𝑛]

= 𝑏0
[𝐼𝑛𝑡𝑒𝑟𝑏𝑢𝑙𝑙]

. This may be rather 

obvious, but it only holds for progeny testing data. 
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Figure 1 Typical scenario for retrospective analysis. 



Proc. Assoc. Advmt. Anim. Breed. Genet. 22:73-80 

75 

What happens under selection? Assume that we want to compare selection candidates with 

“proven” animals. If there is no selection, then 𝟏′𝒖𝑔𝑟𝑜𝑢𝑝1 = 𝟏′𝒖𝑔𝑟𝑜𝑢𝑝2  and there is actually no 

need to make the test. Alas, if there is selection, then  

𝑏0
[𝐻𝑒𝑛𝑑𝑒𝑟𝑠𝑜𝑛]

= (𝟏′�̂�𝑔𝑟𝑜𝑢𝑝1 − 𝟏′�̂�𝑔𝑟𝑜𝑢𝑝2) − (𝟏′𝒖𝑔𝑟𝑜𝑢𝑝1 − 𝟏′𝒖𝑔𝑟𝑜𝑢𝑝2) = 𝑛(�̂� − 𝛥) 

in other words, unbiasedness requires a correct (unbiased!) estimate of the realized genetic trend.  

 

What is overdispersion, a.k.a {Interbull, genomic} bias? Is it affected by selection? 

Dairy cattle breeders are much concerned by overdispersion of genomic proofs. If there is too 

much dispersion of �̂�𝑔𝑒𝑛𝑜𝑚𝑖𝑐 , the retained candidates will have unfairly high �̂�𝑔𝑒𝑛𝑜𝑚𝑖𝑐 . This could 

be staten more formally as “the mean of the EBVs of the selected candidates should be equal to the 

mean of the TBVs”. If selection is by truncation and under multivariate normality, the true mean 

after selection is 𝜇𝑇 = (𝟏′𝒖)/𝑛 + 𝑖𝑟𝜎𝑢, but this mean is (implicitly) predicted before selection as 

𝜇𝐸 = (𝟏′�̂�)/𝑛 + 𝑖𝜎𝑢. 

For 𝜇𝑇 = 𝜇𝐸 to hold, we need the first unbiasedness condition (𝑏0 above), plus a second 

condition,  𝜎�̂� = 𝑟𝜎𝑢. But this condition only holds if 𝐶𝑜𝑣(𝑢, �̂�) = 𝑉𝑎𝑟(�̂�), which amounts to the 

regression coefficient to be 1:  

𝑏1 =
𝐶𝑜𝑣(𝑢, �̂�)

𝑉𝑎𝑟(�̂�)
 

This is the Interbull official, and most put forward, test of unbiasedness and nowadays more 

often called as “bias”. It is easy to see why 𝑏1 = 1 may not hold, namely, because selection 

modifies variances in rather unpredictable manners. The expected 𝐶𝑜𝑣(𝑢, �̂�) = 𝑉𝑎𝑟(�̂�) holds 

under quite restrictive conditions (Henderson 1982).  

 

Evaluations can easily be biased. Unbiasedness of current genetic evaluations is more wishful 

thinking than an established fact. Unbiasedness exist only if several conditions hold: 

 The model is correct (linear model, effects, heritabilities…) 

 The selection process is described by the data  

 Multivariate normality 

Thus, there are many reasons why there is wrong estimate of the genetic trend and thus there will 

be bias: 

 Collinearity of contemporary groups and genetic trend (this is the usual case) 

 Genetic groups in the model 

 Heritability is wrong (or changes with time) 

 Analysis are single trait whereas selection is multiple trait 

 Selection decisions not based on data. 

In addition, genetic gain can be estimated one generation forward (but no more) unless an 

explicit selection model is included. In other words, retrospective analysis cannot be done deleting 
two generations of records. This would need explicit introduction of the selection process. 

 

Why some species/traits seem biased where others do not? Basically, if there is no selection 

then automatically 𝑏0 = 0 holds (i.e., all possible sets of candidates have 0 average value), and 

most likely 𝑏1 = 1 holds, because selection does not change variances, and if a decent estimator of 

genetic variance is used, then genetic parameters are such that 𝑏1 =
𝐶𝑜𝑣(𝑢,𝑢)

𝑉𝑎𝑟(𝑢)
= 1 by construction, 

in particular in a BLUP context. So, bias is expected to increase more with higher genetic gains. 

An example is pigs. Christensen et al. (Christensen et al. 2012) found slopes below 1 ( ~0.9) 

for a heritable, selected trait (daily gain), whereas Xiang et al. (Xiang et al. 2016) found 

regressions nearly one for hard-to-select trait litter size.  
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In Lacaune dairy sheep (Baloche et al. 2014), we can put together the following. Figure 1 

shows the regression slopes vs. the expected genetic gain or the expected loss of genetic variance 

based on Robertson 

(1977) . In theory, 

the reduction in 
variance is 

accounted for by 

genetic evaluation 

(Bijma 2012). In 

practice, this does 

not seem to be the 

case. A possible 

solution may be to 

reestimate this 

variance in each 

cycle of selection. 

Vitezica et al. 
(2011) compared by 

simulation several 

predictors in 

selected populations in a SSGBLUP context. Statistic 𝑏1 generally indicated bias, that was higher 

with less heritability. High heritability increases the selection differential and reduces variances, 

but it also gives more information. Interestingly, the only method which provided unbiased 𝑏1 =
0.99 resulted in strong bias 𝑏0 = 1.38𝜎𝑢. Thus, both bias should be checked. 

 

What do we mean by accuracy? In animal breeding textbooks, accuracy (𝑟, with reliability 𝑟2) is 

presented twice: first, as a component of 𝛥𝐺 = 𝑖𝑟𝜎𝑢 (so, a populational parameter) and, second, as 

a measure of uncertainty of �̂� (an individual parameter). However, when selecting from real 

populations, EBVs are correlated across individuals, so the individual accuracies may be 

meaningless. In other words: it is pointless to obtain 𝑟𝑖 = 0.70 and 𝑟𝑗 = 0.70 if 𝑟(�̂�𝑖 , �̂�𝑗) = 0.69.  

Cross-validation accuracies are computed as correlations 𝑟2 =
𝐶𝑜𝑣(𝑢,𝑢)

𝑉𝑎𝑟(𝑢)𝑉𝑎𝑟(𝑢)
. They indicate our 

ability to rank individuals within a cohort. The fact that these accuracies are computed regardless 

of the correlated structure of both 𝑢 and �̂� has unclear implications.  In fact, it can be shown that, 

if Hendersonian conditions hold, 𝐸(𝑟)2 = 1 −
(𝑑𝑖𝑎𝑔(𝑪22)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅−𝑪22̅̅ ̅̅ ̅)

(𝑑𝑖𝑎𝑔(𝑮)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −�̅�)
 is the expectation of the observed 

reliability. This reliability takes into account the “classical” reliability contained in the diagonal 

terms but also the relationships a priori (in 𝑮) and a posteriori (in 𝑪𝟐𝟐) across individuals. If the 
evaluation method cannot rank correctly within the validation sample, then diagonal and off-

diagonal values of 𝑪22 are similar and reliability drops down. This is a desirable behaviour.   
Selection also affects observed cross-validation accuracy (Edel et al., 2012; Bijma 2012). If the 

cross-validation test uses elite animals, accuracies are underestimated. In other words, it is easy to 

rank all animals, but more difficult to rank elite animals. The reduction is such that  

𝑟𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
2 = 1 − (1 − 𝑟𝑢𝑛𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

2 )
𝜎𝑢𝑢𝑛𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

2

𝜎𝑢𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
2   . 

 

ISSUES OF CROSS-VALIDATION METRICS 

The accuracy of cross-validation metrics. After an experiment has been carried out, the breeder 

wants to know if the genomic accuracy is really different from the parents average accuracy. A 

Figure 2 Slope 𝒃𝟏 vs. expected reduction in genetic variance (left) or 

genetic gain (right) by trait in Lacaune dairy sheep. 
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simple method is to use the theoretical standard error of the estimates; for 𝑏0 and 𝑏1 these are from 

classical regression theory. For the correlation, this is a bit more convoluted, but an option is to use 

Fisher’s z-transform: 𝑧 =
1

2
𝑙𝑛

1+𝑟

1−𝑟
 has approximate s.e. 1/√𝑛 − 3 where 𝑛 is the number of data 

points used. From this a confidence interval can be worked out. For instance, in the Basco-

Bearnaise breed genomic predictions of 87 rams were 0.06 more accurate than parent averages 

(Legarra et al. 2014); this implies a rather symmetric 95% confidence interval of [−0.15,0.27].  
There is a source of bias and two sources of randomness in cross-validation metrics. The 

source of bias is that individuals are related both at the stage of prediction (parent average and 

genomic) and later, at the stage of validation (moment at which they have data; except for the case 

of progeny-tested animals for which proofs can be assumed uncorrelated). This has been discussed 

above. The two sources of randomness are: (1) Sampling of the reference population, (2) Sampling 

of the validation population. Fisher’s z-transform and Hotelling-Williams test include both. 

However, they do not consider that individuals are related, and therefore the accuracy is likely to 

be overestimated. Again, a theoretical equation can be worked out to estimate 𝑉𝑎𝑟(𝑟).  
 

(Re)Sampling of the validation population. A more practical approach involves using 

(re)sampling techniques. In k-fold cross-validation this is immediate but, as discussed before, the 

setting is not realistic. In (Mäntysaari and Koivula 2012; Legarra et al. 2014; Cuyabano et al. 

2015), sampling of the validation population was addressed by bootstrapping, i.e. sampling n 

individuals with replacement from the original n individuals in the validation data set. This method 

main virtue is that it avoids strong influence of outliers in the validation data set. It also allows 

formal comparisons of accuracies. Its main drawback is that it does not addresses the sampling of 

the reference population. 

  

(Re)sampling of the reference population. Recently,  (Mikshowsky et al. 2016) bootstrapped, 

not the validation, but the reference population. This also provides distribution of metrics. 
However, it may be argued that, in a dairy cattle reference population, including a sire twice (what 

the bootstrapping actually does) is like including it once, because the accuracy of the sire pseudo-

phenotype is close to 1 in dairy cattle. Thus, including it twice will not change much the solution 

for the sire – or the contribution of the sire to SNPs solutions. Therefore, randomness comes from 

removing sires more than by overrepresenting sires. In that sense, Mikshowsky et al. (2016) 

bootstrap corresponds to Tukey’s jackknife with 

more than one data point removed.  

 

Superiority of genomic on pedigree predictions is 

a function of family structure of the validation 

data set. Consider a set of two generations, a 
generation of parents and one of descendants: n full-

sib families with k offspring each. Parents have 

information (say, own weight) but there is not 

information for the offspring. We can ask: is it worth 

doing genomic prediction? 

Families can be easily ranked based on parent 

average, but there is not possibility to rank within 

families with pedigree information. However, 

genomic information can rank within family as well 

as across families. Thus, the observed benefit of 

GBLUP by retrospective analysis will be larger in a 
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set composed of few families with a large number of candidates within families. In the limit, if 

there is one big family, pedigree prediction has 0 accuracy, whereas if there are 𝑛 families with 1 

offspring each, pedigree and genomic predictions should behave similarly.  

This is supported by Figure 3 in which we plot the genomic vs pedigree accuracy for milk yield 

for five dairy sheep and two dairy cattle breeds in France, as a function of family size. Clearly, the 
larger the family size, the larger the benefit because genomic selection allows distinguishing sibs. 

This raises several questions: (1) Do comparisons reflect “genetic architecture” or merely data 

structure in the validation? (2) Do selection schemes that select across families get less benefit 

from genomic selection? (3) Is Holstein gaining a lot from genomic selection because it has higher 

LD than other breeds or just as an artefact of its family structure?  

 

Which variables to use on the metrics? In the dairy industry, sires do not have phenotypes, so 

that comparisons are between (G)EBV’s and the “true” progeny proofs or deregressed proofs. In 

other species, it is more common to compare (G)EBV’s to “true” phenotypes, say 𝒚, using an 

approximation 𝑟 = 𝐶𝑜𝑟𝑟(𝐺𝐸𝐵𝑉, 𝑦)/ℎ where ℎ2 is the heritability (Legarra et al. 2008). This is 
unsatisfactory, for conceptual and practical reasons: 

 The equation above for r assumes uncorrelated individuals and GEBV’s 

 Records 𝒚 are typically pre-corrected to 𝒚∗ = 𝒚 − 𝑿�̂�, and the results are sensitive to 

precorrection. It is unclear what happens if there are contemporary groups in 𝒃 that are not 

present in the training data. 

 If the whole data set is used for precorrection, then a relationship structure is fit (e.g. 

pedigree relationships) as 𝒚∗ = (𝑰 − 𝑿(𝑿′(𝒁𝑨𝒁𝜎𝑢
2 + 𝑰𝜎𝑒

2)−1𝑿)−)𝒚 where 𝑨𝜎𝑢
2 is assumed 

to be “correct”. If the assumed relationship is biased or incorrect, so will be �̂� and 𝒚∗, and 

the bias will be toward the assumed relationship. This may explain some puzzling results, 

e.g. poor performance of genomic prediction in low heritable traits such as fertility (Hayes 
et al. 2009).  

 Even after precorrection, there will be a remaining covariance structure across pre-

corrected 𝒚∗. This structure is notoriously hard to model (and rarely modelled). This may 

explain phenomena such as 
𝐶𝑜𝑟𝑟(𝐺𝐸𝐵𝑉,𝒚∗)

ℎ
> 1. 

 Some precorrected 𝒚∗ are too clumsy (Ricard et al. 2013) to be believed or computed in 
practice, for instance maternal effects.  

 

CROSS-VALIDATION ACCURACIES FROM METHOD R  

Description of the method. We propose to use the properties of method R to construct metrics of 

cross-validation. Reverter et al. (1994) observed that the regression of EBVs obtained with 

“whole” (𝑤) data on EBVs estimated with “partial” (𝑝) data, 𝑏𝑤,𝑝 =
𝐶𝑜𝑣(𝑢𝑤,𝑢𝑝)

𝑉𝑎𝑟(𝑢𝑝)
 is 1, and this 

checks bias (in the sense 𝑏1 before). The correlation of partial on whole (eq. 7-9 in their paper) 

𝜌𝑝,𝑤 =
𝐶𝑜𝑣(𝑢𝑝,𝑢𝑤)

√𝑉𝑎𝑟(𝑢𝑤)𝑉𝑎𝑟(𝑢𝑝)
 is a function of respective accuracies. Invoking exchangeability, both 

equations can be extended to multivariate forms, and expectations can be taken in both the 

numerator and the denominator, resulting in: 

𝑏𝑤,𝑝 = �̂�𝑤
′ 𝑲−1�̂�𝑝/�̂�𝑝

′ 𝑲−1�̂�𝑝 

where 𝑲 is a matrix of relationships, 𝑏𝑝,𝑤 with an expected value of 1, and  

𝜌𝑤,𝑝 = �̂�𝑝
′ 𝑲−1�̂�𝑤/√�̂�𝑝

′ 𝑲−1�̂�𝑝�̂�𝑤
′ 𝑲−1�̂�𝑤 
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with an expected value 𝐸(𝜌𝑤,𝑝) = √
𝜇

𝑎𝑐𝑐𝑝
2

𝜇
𝑎𝑐𝑐𝑤

2
 that is, proportional to the relative increase in average 

reliabilities. As more data cumulates, �̂� tends towards the true breeding values, thus �̂�𝑤 is more 

accurate than �̂�𝑝. The empirical covariance �̂�𝑤
′ 𝑲−1�̂�𝑝 measures the strength of the association 

between the two, whereas �̂�𝑝
′ 𝑲−1�̂�𝑝 measures the extent of shrinkage due to lack of information. 

In other words, the theoretical prediction error covariances are replaced by empirical ones 

(Thompson 2001). By combining cross-validation and theory from mixed models, we hope to 

retain the best of both worlds: a measure of accuracy that corresponds to reality and that is little 

affected by the existence of related, unbalanced data. Therefore, an algorithm to estimate accuracy 

of (say) PBLUP and GBLUP is: 

 
1. Compute EBV’s with all data (“whole”) using, say, GBLUP (which method should not be 

critical if all animals have data or progeny) 

2. Choose cutoff date 

3. Create “partial” data: Set values after cutoff date to missing  

4. Compute EBVs based on “partial” and GBLUP 

5. Compute statistic 𝑏𝑤,𝑝
𝐺𝐵𝐿𝑈𝑃 =

�̂�𝑝
′ 𝑲−1�̂�𝑤

�̂�𝑝
′ 𝑲−1�̂�𝑝

 

6. Compute statistic 𝜌𝑝,𝑤
𝐺𝐵𝐿𝑈𝑃 =

�̂�𝑝
′ 𝑲−1�̂�𝑤

√�̂�𝑤
′ 𝑲−1�̂�𝑤�̂�𝑝

′ 𝑲−1�̂�𝑝

 

7. Compute EBVs based on “partial” and PBLUP 

8. Compute statistic 𝑏𝑤,𝑝
𝑃𝐵𝐿𝑈𝑃 =

�̂�𝑝
′ 𝑲−1�̂�𝑤

�̂�𝑝
′ 𝑲−1�̂�𝑝

 

9. Compute statistic 𝜌𝑝,𝑤
𝑃𝐵𝐿𝑈𝑃 =

�̂�𝑝
′ 𝑲−1�̂�𝑤

√�̂�𝑤
′ 𝑲−1�̂�𝑤�̂�𝑝

′ 𝑲−1�̂�𝑝

 

 

For forward cross-validation, the statistics should be computed for the focal individuals (i.e., 

candidates to selection). On exit, 𝑏𝑤,𝑝
𝐺𝐵𝐿𝑈𝑃 should be 1 (unbiased method) and is equivalent to 𝑏1 

and 𝜌𝑝,𝑤
𝐺𝐵𝐿𝑈𝑃 and 𝜌𝑝,𝑤

𝑃𝐵𝐿𝑈𝑃 describes the respective accuracies of GBLUP and PBLUP. An extra 

statistic is bias 𝜇𝑤𝑝 = 𝑏0 = (𝟏′𝑲−1�̂�𝑤 − 𝟏′𝑲−1�̂�𝑝)/𝑛 . Matrix 𝐊 should be the “true” relationship 

matrix across individuals but there should be no great difference in using either genomic or 

pedigree relationships as far as they are correct. The procedure has several advantages: is 

completely general (it can be used e.g. for maternal traits or random regression), it is semi-

automatic, and can, at least potentially, provide estimates of the accuracy of the cross-validation 

metric. There are though many points that need to be addressed: robustness to misspecification, the 

role of selection (and how to avoid biases in the estimates of the different 𝑏′𝑠), how to sample 

efficiently, etc. 

 

TEST WITH REAL LIFE DATA SETS 
In beef cattle, we used genetic and phenotypic resources from Brahman cows (N = 995) and 

bulls (N = 1,116) outlined in (Porto-Neto et al. 2015). The phenotype was yearling body weight. A 

procedure “method R” as above was introduced to assess accuracy of GBLUP, and random (1000 

replicates) splits of the data set in training and validation was used, as animals are quite unrelated 

and belong to a single generation. We only present very briefly the results. The statistic 𝑏𝑤,𝑝 =

0.96 ± 0.08 (in the whole population) showed that evaluation was nearly unbiased, whereas 

𝜌𝑝,𝑤 = 0.67 ± 0.02 has a correlation of 0.81 with conventional cross-validation accuracy 
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estimated as 
𝐶𝑜𝑟𝑟(𝐺𝐸𝐵𝑉,𝒚∗)

ℎ
. 

In dairy sheep, we used a large data set (Manech Tete Rousse) of 1,700,000 milk yield 

performances, 500,000 animals in pedigree and 2,111 sires with 50K genotypes. Data was split at 

2011 in training and validation. For all individuals, unbiasedness of (SSG)BLUP was checked 

with results 𝜇𝑤,𝑝 = 𝑏0 = 0.2𝜎𝑔 = 5 (liters), 𝑏𝑤,𝑝 = 𝑏1 = 0.996, so genetic evaluation is virtually 

unbiased for 𝑏1 (slope) but not for 𝑏0 (genetic trend), which is unsurprising because the model 

includes Unknown Parent Groups. Later, candidates to selection were compared, with 𝜌𝑤,𝑝
𝑆𝑆𝐺𝐵𝐿𝑈𝑃 =

0.55 vs. 𝜌𝑤,𝑝
𝐵𝐿𝑈𝑃 = 0.39, and both evaluations where notoriously biased (𝑏1

𝑆𝑆𝐺𝐵𝐿𝑈𝑃 = 0.77, 𝑏1
𝐵𝐿𝑈𝑃 =

0.70), possibly due to selection not well accounted for. All these results agree well with previous 

analysis (Legarra et al. 2014). 
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